

Welcome to metawrap’s documentation!

Contents:

	Readme

	Installation

	Usage

	API

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

metawrap

[image: _images/metawrap.svg]
 [https://pypi.python.org/pypi/metawrap][image: _images/metawrap1.svg]
 [https://travis-ci.org/jakirkham/metawrap][image: Documentation Status]
 [https://metawrap.readthedocs.io/en/latest/?badge=latest][image: Coveralls]
 [https://coveralls.io/github/jakirkham/metawrap][image: License]
A collection of wrappers for functions and classes.

	Free software: BSD 3-Clause

	Documentation: https://metawrap.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the nanshe-org/nanshe-cookiecutter [https://github.com/nanshe-org/nanshe-cookiecutter] project template.

Installation

Stable release

To install metawrap, run this command in your terminal:

$ pip install metawrap

This is the preferred method to install metawrap, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for metawrap can be downloaded from the Github repo [https://github.com/jakirkham/metawrap].

You can either clone the public repository:

$ git clone git://github.com/jakirkham/metawrap

Or download the tarball [https://github.com/jakirkham/metawrap/tarball/master]:

$ curl -OL https://github.com/jakirkham/metawrap/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use metawrap in a project:

import metawrap

API

	metawrap package
	Submodules
	metawrap.metawrap module
	Overview

	API

metawrap package

Submodules

	metawrap.metawrap module
	Overview

	API

metawrap.metawrap module

The module metawrap provides support decorating functions and classes.

Overview

The module metawrap extends wrapping abilities found in functools [http://docs.python.org/2/library/functools.html]. In
particular, it is ensured all wrapped functions contain an attribute
__wrapped__, which points back to the original function before the wrapper
was applied. Also, the ability to wrap classes with a decorator to apply a
metaclass or series of ``metaclass``es is provided. Making it much easier
to transform classes without mucking in their internals.

API

	
metawrap.metawrap.class_decorate_all_methods(*decorators)

	Returns a decorator that decorates a class such that all its methods
are decorated by the decorators provided.

	Parameters

	*decorators (tuple) – decorators to decorate all methods with.

	Returns

	a decorator for the class.

	Return type

	(decorator)

	
metawrap.metawrap.class_decorate_methods(**method_decorators)

	Returns a decorator that decorates a class such that specified methods
are decorated by the decorators provided.

	Parameters

	**method_decorators (tuple) – method names with a single
decorator or a list of decorators.

	Returns

	a decorator for the class.

	Return type

	(decorator)

	
metawrap.metawrap.class_static_variables(**kwargs)

	Returns a decorator that decorates a class such that it has the given
static variables set.

	Parameters

	**kwargs (tuple) – keyword args will be set to the value
provided.

	Returns

	a decorator for the class.

	Return type

	(decorator)

	
metawrap.metawrap.identity_wrapper(a_callable)

	Trivially wraps a given callable without doing anything else to it.

	Parameters

	a_callable (callable) – the callable that is being wrapped.

	Returns

	a wrapped callable.

	Return type

	(callable)

	
metawrap.metawrap.metaclass(meta)

	Returns a decorator that decorates a class such that the given
metaclass is applied.

Note

Decorator will add the __metaclass__ attribute so the last
metaclass applied is known. Also, decorator will add the
__wrapped__ attribute so that the unwrapped class can be retrieved.

	Parameters

	meta (metaclass) – metaclass to apply to a given class.

	Returns

	a decorator for the class.

	Return type

	(decorator)

	
metawrap.metawrap.metaclasses(*metas)

	Returns a decorator that decorates a class such that the given
metaclasses are applied.

Note

Shorthand for repeated application of metaclass.

	Parameters

	*metas (metaclasses) – metaclasses to apply to a given class.

	Returns

	a decorator for the class.

	Return type

	(decorator)

	
metawrap.metawrap.repack_call_args(a_callable, *args, **kwargs)

	Reorganizes args and kwargs to match the given callables signature.

	Parameters

	
	a_callable (callable) – some callable.

	*args (callable) – positional arguments for the callable.

	**kwargs (callable) – keyword arguments for the callable.

	Returns

	
	all arguments as passed as position

	arguments, all default arguments and
all arguments passed as keyword
arguments.

	Return type

	args (tuple)

	
metawrap.metawrap.static_variables(**kwargs)

	Returns a decorator that decorates a callable such that it has the
given static variables set.

	Parameters

	*kwargs (tuple) – keyword args will be set to the value provided.

	Returns

	a decorator for the callable.

	Return type

	(decorator)

	
metawrap.metawrap.tied_call_args(a_callable, *args, **kwargs)

	Ties all the args to their respective variable names.

	Parameters

	
	a_callable (callable) – some callable.

	*args (callable) – positional arguments for the callable.

	**kwargs (callable) – keyword arguments for the callable.

	Returns

	
	ordered dictionary of arguments name and

	their values, all variadic position
arguments, all variadic keyword
arguments.

	Return type

	args (tuple)

	
metawrap.metawrap.unwrap(a_callable)

	Returns the underlying function that was wrapped.

	Parameters

	a_callable (callable) – some wrapped (or not) callable.

	Returns

	the callable that is no longer wrapped.

	Return type

	(callable)

	
metawrap.metawrap.update_wrapper(wrapper, wrapped, assigned=('__module__', '__name__', '__doc__'), updated=('__dict__',))

	Extends functools.update_wrapper to ensure that it stores the wrapped
function in the attribute __wrapped__.

	Parameters

	
	wrapper (callable) – the replacement callable.

	wrapped (callable) – the callable that is being wrapped.

	assigned (tuple) – is a tuple naming the attributes assigned
directly from the wrapped function to the
wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)

	updated (tuple) – is a tuple naming the attributes of the
wrapper that are updated with the
corresponding attribute from the wrapped
function (defaults to
functools.WRAPPER_UPDATES)

	Returns

	the wrapped callable.

	Return type

	(callable)

	
metawrap.metawrap.with_setup_state(setup=None, teardown=None)

	Adds setup and teardown callable to a function s.t. they can mutate it.

Based on with_setup from nose. This goes a bit further than
nose does and provides a mechanism for the setup and teardown
functions to change the callable in question. In other words, variables
generated in setup can be stored in the functions globals and then
cleaned up and removed in teardown. The final result of using this
function should be a function equivalent to one generated by
with_setup.

	Parameters

	
	setup (callable) – A callable that takes the decorated
function as an argument. This sets up the
function before execution.

	teardown (callable) – A callable that takes the decorated
function as an argument. This cleans up the
function after execution.

	Returns

	Does the actual decoration.

	Return type

	callable

	
metawrap.metawrap.with_setup_state_handler(a_callable)

	A final wrapper for with_setup_state.

This calls setup and teardown before and after if
defined. When used as a decorator, this should come after
all setup and teardown calls.

	Parameters

	a_callable (callable) – A callable to run setup and
teardown on.

	Returns

	The wrapped function.

	Return type

	callable

	
metawrap.metawrap.wraps(wrapped, assigned=('__module__', '__name__', '__doc__'), updated=('__dict__',))

	Builds on functools.wraps to ensure that it stores the wrapped function
in the attribute __wrapped__.

	Parameters

	
	wrapped (callable) – the callable that is being wrapped.

	assigned (tuple) – is a tuple naming the attributes assigned
directly from the wrapped function to the
wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)

	updated (tuple) – is a tuple naming the attributes of the
wrapper that are updated with the
corresponding attribute from the wrapped
function (defaults to
functools.WRAPPER_UPDATES)

	Returns

	
	a decorator for callable, which will

	contain wrapped.

	Return type

	(callable)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jakirkham/metawrap/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

metawrap could always use more documentation, whether as part of the
official metawrap docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jakirkham/metawrap/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up metawrap for local development.

	Fork the metawrap repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/metawrap.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n metawrapenv python="<some version>"
$ source activate metawrapenv
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 metawrap tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4 and 3.5. Check
https://travis-ci.org/jakirkham/metawrap/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_metawrap

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 metawrap	

 	
 	
 metawrap.metawrap	

Index

 C
 | I
 | M
 | R
 | S
 | T
 | U
 | W

C

 	
 	class_decorate_all_methods() (in module metawrap.metawrap)

 	
 	class_decorate_methods() (in module metawrap.metawrap)

 	class_static_variables() (in module metawrap.metawrap)

I

 	
 	identity_wrapper() (in module metawrap.metawrap)

M

 	
 	metaclass() (in module metawrap.metawrap)

 	metaclasses() (in module metawrap.metawrap)

 	
 	metawrap (module)

 	metawrap.metawrap (module)

R

 	
 	repack_call_args() (in module metawrap.metawrap)

S

 	
 	static_variables() (in module metawrap.metawrap)

T

 	
 	tied_call_args() (in module metawrap.metawrap)

U

 	
 	unwrap() (in module metawrap.metawrap)

 	
 	update_wrapper() (in module metawrap.metawrap)

W

 	
 	with_setup_state() (in module metawrap.metawrap)

 	
 	with_setup_state_handler() (in module metawrap.metawrap)

 	wraps() (in module metawrap.metawrap)

Credits

Development Lead

	John Kirkham <kirkhamj@janelia.hhmi.org>

Contributors

None yet. Why not be the first?

History

0.1.0 (2016-08-18)

	First release on PyPI.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to metawrap’s documentation!

 		
 Readme

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 API

 		
 metawrap package

 		
 Submodules

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

