
metawrap Documentation
Release 0.0.2+0.ga37e365.dirty

John Kirkham

Mar 09, 2017

Contents

1 metawrap 3

2 Installation 5

3 Usage 7

4 API 9

5 Contributing 13

6 Indices and tables 17

Python Module Index 19

i

ii

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

Contents:

Contents 1

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

2 Contents

CHAPTER 1

metawrap

A collection of wrappers for functions and classes.

• Free software: BSD 3-Clause

• Documentation: https://metawrap.readthedocs.io.

Features

• TODO

Credits

This package was created with Cookiecutter and the nanshe-org/nanshe-cookiecutter project template.

3

https://metawrap.readthedocs.io
https://github.com/audreyr/cookiecutter
https://github.com/nanshe-org/nanshe-cookiecutter

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

4 Chapter 1. metawrap

CHAPTER 2

Installation

Stable release

To install metawrap, run this command in your terminal:

$ pip install metawrap

This is the preferred method to install metawrap, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

From sources

The sources for metawrap can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/jakirkham/metawrap

Or download the tarball:

$ curl -OL https://github.com/jakirkham/metawrap/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/jakirkham/metawrap
https://github.com/jakirkham/metawrap/tarball/master

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

6 Chapter 2. Installation

CHAPTER 3

Usage

To use metawrap in a project:

import metawrap

7

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

8 Chapter 3. Usage

CHAPTER 4

API

metawrap package

Submodules

metawrap.metawrap module

The module metawrap provides support decorating functions and classes.

Overview

The module metawrap extends wrapping abilities found in functools. In particular, it is ensured all wrapped
functions contain an attribute __wrapped__, which points back to the original function before the wrapper was
applied. Also, the ability to wrap classes with a decorator to apply a metaclass or series of ‘‘metaclass‘‘es is
provided. Making it much easier to transform classes without mucking in their internals.

API

metawrap.metawrap.class_decorate_all_methods(*decorators)
Returns a decorator that decorates a class such that all its methods are decorated by the decorators provided.

Parameters *decorators (tuple) – decorators to decorate all methods with.

Returns a decorator for the class.

Return type (decorator)

metawrap.metawrap.class_decorate_methods(**method_decorators)
Returns a decorator that decorates a class such that specified methods are decorated by the decorators provided.

Parameters **method_decorators (tuple) – method names with a single decorator or a list
of decorators.

9

http://docs.python.org/2/library/functools.html

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

Returns a decorator for the class.

Return type (decorator)

metawrap.metawrap.class_static_variables(**kwargs)
Returns a decorator that decorates a class such that it has the given static variables set.

Parameters **kwargs (tuple) – keyword args will be set to the value provided.

Returns a decorator for the class.

Return type (decorator)

metawrap.metawrap.identity_wrapper(a_callable)
Trivially wraps a given callable without doing anything else to it.

Parameters a_callable (callable) – the callable that is being wrapped.

Returns a wrapped callable.

Return type (callable)

metawrap.metawrap.metaclass(meta)
Returns a decorator that decorates a class such that the given metaclass is applied.

Note: Decorator will add the __metaclass__ attribute so the last metaclass applied is known. Also, decorator
will add the __wrapped__ attribute so that the unwrapped class can be retrieved.

Parameters meta (metaclass) – metaclass to apply to a given class.

Returns a decorator for the class.

Return type (decorator)

metawrap.metawrap.metaclasses(*metas)
Returns a decorator that decorates a class such that the given metaclasses are applied.

Note: Shorthand for repeated application of metaclass.

Parameters *metas (metaclasses) – metaclasses to apply to a given class.

Returns a decorator for the class.

Return type (decorator)

metawrap.metawrap.repack_call_args(a_callable, *args, **kwargs)
Reorganizes args and kwargs to match the given callables signature.

Parameters

• a_callable (callable) – some callable.

• *args (callable) – positional arguments for the callable.

• **kwargs (callable) – keyword arguments for the callable.

Returns

all arguments as passed as position arguments, all default arguments and all arguments
passed as keyword arguments.

10 Chapter 4. API

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

Return type args (tuple)

metawrap.metawrap.static_variables(**kwargs)
Returns a decorator that decorates a callable such that it has the given static variables set.

Parameters *kwargs (tuple) – keyword args will be set to the value provided.

Returns a decorator for the callable.

Return type (decorator)

metawrap.metawrap.tied_call_args(a_callable, *args, **kwargs)
Ties all the args to their respective variable names.

Parameters

• a_callable (callable) – some callable.

• *args (callable) – positional arguments for the callable.

• **kwargs (callable) – keyword arguments for the callable.

Returns

ordered dictionary of arguments name and their values, all variadic position arguments, all
variadic keyword arguments.

Return type args (tuple)

metawrap.metawrap.unwrap(a_callable)
Returns the underlying function that was wrapped.

Parameters a_callable (callable) – some wrapped (or not) callable.

Returns the callable that is no longer wrapped.

Return type (callable)

metawrap.metawrap.update_wrapper(wrapper, wrapped, assigned=(‘__module__’, ‘__name__’,
‘__doc__’), updated=(‘__dict__’,))

Extends functools.update_wrapper to ensure that it stores the wrapped function in the attribute __wrapped__.

Parameters

• wrapper (callable) – the replacement callable.

• wrapped (callable) – the callable that is being wrapped.

• assigned (tuple) – is a tuple naming the attributes assigned directly from the wrapped
function to the wrapper function (defaults to functools.WRAPPER_ASSIGNMENTS)

• updated (tuple) – is a tuple naming the attributes of the wrapper that are up-
dated with the corresponding attribute from the wrapped function (defaults to func-
tools.WRAPPER_UPDATES)

Returns the wrapped callable.

Return type (callable)

metawrap.metawrap.with_setup_state(setup=None, teardown=None)
Adds setup and teardown callable to a function s.t. they can mutate it.

Based on with_setup from nose. This goes a bit further than nose does and provides a mechanism for the
setup and teardown functions to change the callable in question. In other words, variables generated in setup
can be stored in the functions globals and then cleaned up and removed in teardown. The final result of using
this function should be a function equivalent to one generated by with_setup.

Parameters

4.1. metawrap package 11

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

• setup (callable) – A callable that takes the decorated function as an argument. This
sets up the function before execution.

• teardown (callable) – A callable that takes the decorated function as an argument.
This cleans up the function after execution.

Returns Does the actual decoration.

Return type callable

metawrap.metawrap.with_setup_state_handler(a_callable)
A final wrapper for with_setup_state.

This calls setup and teardown before and after if defined. When used as a decorator, this should come after
all setup and teardown calls.

Parameters a_callable (callable) – A callable to run setup and teardown on.

Returns The wrapped function.

Return type callable

metawrap.metawrap.wraps(wrapped, assigned=(‘__module__’, ‘__name__’, ‘__doc__’), up-
dated=(‘__dict__’,))

Builds on functools.wraps to ensure that it stores the wrapped function in the attribute __wrapped__.

Parameters

• wrapped (callable) – the callable that is being wrapped.

• assigned (tuple) – is a tuple naming the attributes assigned directly from the wrapped
function to the wrapper function (defaults to functools.WRAPPER_ASSIGNMENTS)

• updated (tuple) – is a tuple naming the attributes of the wrapper that are up-
dated with the corresponding attribute from the wrapped function (defaults to func-
tools.WRAPPER_UPDATES)

Returns

a decorator for callable, which will contain wrapped.

Return type (callable)

12 Chapter 4. API

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jakirkham/metawrap/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

13

https://github.com/jakirkham/metawrap/issues

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

Write Documentation

metawrap could always use more documentation, whether as part of the official metawrap docs, in docstrings, or even
on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jakirkham/metawrap/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up metawrap for local development.

1. Fork the metawrap repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/metawrap.git

3. Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork
for local development (on Windows drop source). Replace “<some version>” with the Python version used for
testing.:

$ conda create -n metawrapenv python="<some version>"
$ source activate metawrapenv
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions:

$ flake8 metawrap tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

14 Chapter 5. Contributing

https://github.com/jakirkham/metawrap/issues

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5, and 3.6. Check https://travis-ci.org/jakirkham/metawrap/
pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_metawrap

5.3. Pull Request Guidelines 15

https://travis-ci.org/jakirkham/metawrap/pull_requests
https://travis-ci.org/jakirkham/metawrap/pull_requests

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

16 Chapter 5. Contributing

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

metawrap Documentation, Release 0.0.2+0.ga37e365.dirty

18 Chapter 6. Indices and tables

Python Module Index

m
metawrap, 9
metawrap.metawrap, 9

19

Index

C
class_decorate_all_methods() (in module

metawrap.metawrap), 9
class_decorate_methods() (in module

metawrap.metawrap), 9
class_static_variables() (in module metawrap.metawrap),

10

I
identity_wrapper() (in module metawrap.metawrap), 10

M
metaclass() (in module metawrap.metawrap), 10
metaclasses() (in module metawrap.metawrap), 10
metawrap (module), 9
metawrap.metawrap (module), 9

R
repack_call_args() (in module metawrap.metawrap), 10

S
static_variables() (in module metawrap.metawrap), 11

T
tied_call_args() (in module metawrap.metawrap), 11

U
unwrap() (in module metawrap.metawrap), 11
update_wrapper() (in module metawrap.metawrap), 11

W
with_setup_state() (in module metawrap.metawrap), 11
with_setup_state_handler() (in module

metawrap.metawrap), 12
wraps() (in module metawrap.metawrap), 12

20

	metawrap
	Installation
	Usage
	API
	Contributing
	Indices and tables
	Python Module Index

